
DPX™
Development Pac Extension 
for the Sorcerer Computer

A CoResident Program that Extends 
the Command Capabilities of 
Exidy’s DEVELOPMENT PAC.

By Don Ursem
(Requires Exidy’s DEVELOPMENT PAC not included.)

A 
product 

of
QUTiLrry 
SOFTWZ1RG

Published by Quality Software. 
©1980 by Quality Software. All rights reserved. 

No part of this publication may be reproduced without prior written consent.





INTRODUCING DPX

If you’ve tried programming using Exidy’s new Z-80 
DEVELOPMENT PAC system, you’ve found out that there are many 
excellent features packed into that 8K of ROM. But Exidy’s 
design team opted to give you features like the Relocating 
Linking Loader and full I/O control, rather than a fancy 
editor. In fact, only 1K of the ROM PAC was left for the 
editor - and they put quite a few functions into that 
space.

What you didn't get were edit features like the 
ability to move the line pointer upward a few lines. Or to 
locate a particular word or symbol that needs changing. Or to 
make global string substitutions. DPX will allow you these 
editing capabilities and more.

There are also a number of frequently performed I/O 
operations that are not very convenient using the DEVELOPMENT 
PAC. It is not a trivial matter, for example, to exit the 
EDITOR, get into the MONITOR, set the baud rate for printing, 
then get back to DDT80 and set up for a printed assembly 
listing. With DPX, this kind of task is much easier.

DPX is a program that loads into memory right along 
with the DEVELOPMENT PAC. It adds in many convenience features 
that Exidy couldn't fit into the ROM PAC. DPX commands can be 
intermixed with the regular commands, all of which still work 
as usual.

The DPX commands were selected to take care of the 
functions that the author felt were most needed after working 
for many hours with Exidy’s development system. With DPX 
loaded, you' 11 feel you have the power of a large scale 
computer development system at your command!

STARTUP PROCEDURE

1. Make sure your Sorcerer is TURNED OFF and insert 
your DEVELOPMENT PAC into the ROM PAC slot. Then power up the 
Sorcerer. This puts you in the DDT80 mode, indicated by the 
(.) prompt.

2. Ehter the command:

E E003 <return>

This junps you to the MONITOR so that you can load 
the DPX program from tape cassette. You should see the MONITOR 
prompt (>) on the display. There is a separate DPX version on 
the tape for your Sorcerer memory size. If you have 8K, 16K, 
or 32K, you can simply issue the MONITOR LOadGo command:



LOG DPXnn <return>

inhere nn represents your memory size. That is, for a 16K 
machine, you’d load the file named DPX16 rather than DPX8 or 
DPX32. (If you have a 48K machine see the special instructions 
in Appendix A.)

On completion of the LOadGo, DPX takes control, 
prints its sign-on message, and places you back in DDT80 mode 
ready to go. That’s all there is to it! All DEVELOPMENT PAC 
commands plus all DPX commands are now in operation.

3- At this point, use the M command to look at the 
I/O vectors. You’ll see that DPX has already done its first 
chore for you. Since RAM based operation is the setup you’ll 
probably want most often, DPX presets all I/O vectors for RAM 
based operation. If you require other settings, alter them at 
this time.

4. To get into the EDITOR mode after initial startup, 
it is best to use the command:

E :ED

This command initializes and clears the EDITOR 
workspace by resetting pointers for Start of Text (SOT), End of 
Text (EOT), and Low (LO) and High (HI) memory boundaries. It 
ensures that all boundaries are clearly known and that no 
garbage or left-over text is in your edit space. Subsequent 
re-entries to the EDITOR can be done using the DPX command #ED, 
or by the DDT80 command E :ER. These two commands do not reset 
text boundaries and do not destroy text already in the 
workspace. (The #ED command also performs some other 
’housekeeping’ tasks as you'll see later. So it is better to 
use #ED rather than E :ER).

COMMAND USAGE

DPX does not at all change the operational structure 
of the DEVELOPMENT PAC - it merely provides you with additional 
commands. It may be helpful at this point to review the 
structure of Exidy's development system. There are four 
operating modes:

1. DDT80 (Designer's Debugging Tool). This is the 
'executive' mode of the DEVELOPMENT PAC. It is used to display 
and modify memory, to execute user programs, and to call the 
other modes of the DEVELOPMENT PAC. When in DDT80, a period 
(.) prompt is displayed on the video screen.

-2-



1 A

2. EDITOR. This is the mode that the programmer 
spends the most time in, creating and editing source files. 
(Some use it for simple letter-writing tasks too.) When in 
EDITOR, an asterisk (*) prompt is displayed.

3. ASSEMBLER. This mode is called only when the 
progranner is ready to assemble a source file into Z-80 object 
(machine language) code. The programmer is never really ’in’ 
the ASSEMBLER, because control is always returned to DDT80 when 
the assembly is complete.

4. LOADER. This mode is called from DDT80 via the L 
command to load and link executable assembled modules. Only 
two commands (L and .) refer to this mode, and on exit control 
passes to the Sorcerer MONITOR. Like the EDITOR, the LOADER 
uses an asterisk (*) prompt.

All DPX commands, which are distinguished from 
DEVELOPMENT PAC commands in that they begin with a pound sign 
(#), may be entered from any mode. They can be used while in 
DDT80, when in the EDITOR, and even when in the Sorcerer 
MONITOR. But most DPX commands only make sense in and are 
intended for use from a specific mode.

The command summary on the last page of this manual 
groups both DEVELOPMENT PAC and DPX commands by operating mode. 
There is nothing to prevent the programmer from using DPX 
commands from other than the intended modes, but be careful. 
Several of the text-editing ccmnands will bring unpredictable 
results if used from outside the EDITOR mode.

COMMAND SYNTAX

All DPX commands are distinguished from DEVELOPMENT 
PAC commands in that they begin with a pound sign (#) 
character.

The DPX commands are usually two letter mnemonics 
which if you prefer, may be spelled out as complete words. 
Thus #ED and #EDIT mean the same thing to DPX. Where 
parameters are required, these follow the command, separated by 
spaces. These conventions should be familiar to you, since 
Exidy MONITOR commands follow exactly the same rules.

As soon as you type a pound sign, the rest of that 
line, up to a carriage return, is interpreted as a DPX command. 
A second pound sign on that same line is treated as a restart 
of the DPX command, and anything previous to it is ignored.



Thus, if you make a mistake on the parameter value or 
start to enter the wrong command, just type another pound sign 
and keep going to enter the correct complete command.

Backspace is not supported within either DPX or DET80 
commands, because the commands are short and easily retyped. 
It only works with normal EDITOR commands or while entering 
text. If you do type a backspace (shift-RUB) it simply cancels 
the command, and DPX will print INVALID COMMAND.

DPX commands may be issued at any time, whether you 
are in DDT80 or EDITOR or the MONITOR. As soon as the poind 
sign is typed, the DEVELOPMENT PAC or MONITOR loses control 
until DPX is finished with its command. On completion, DPX- 
feeds back just the carriage return, so that the system sees 
only what was typed before the pound sign (if anything) 
terminated by a return” If”the DPX command is (as usual) the 
only entry on the line, the host system sees only a carriage 
return entered on that line.

In the MONITOR, this gets a reply of INVALID COMMAND. 
In the EDITOR mode, this simply prints the next line. Hh the 
DDT 80 mode, nothing happens until you hit a second carriage 
return, and then you simply get another DDT80 prompt (.). 
DDT80 always expects two characters or more per command, so if 
you’re in that mode and issue a DPX command, you’ll have to hit 
two returns instead of one.

At first, you may forget to include the pound sign on 
DPX commands, which means they will be interpreted as invalid 
DEVELOPMENT PAC commands. This won’t hurt anything. Just hit 
return and re-enter them properly. All DPX mnemonics were 
chosen so that they mean nothing to DEVELOPMENT PAC and will 
simply be ignored. (The only caution is that in the MONITOR, a 
//LOAD command without the pound sign becomes a LOAD command. 
You must not try to use this command outside of EDITOR mode 
anyway!)

DPX TRANSFER COMMANDS

If you have ever found yourself in the EDITOR, ready 
to exit, but with cassette I/O set when you really wanted RAM
based, or vice versa, you’ll appreciate these commands. They 
allow you to directly jimp from EDITOR to DDT80 or MONITOR 
level, perform any command, then jimp back into EDITOR with no 
loss of text or change in I/O vector settings.



//MONITOR <return> or //MON or #M0

This command does a direct junp to address E003H, 
which reenters the Sorcerer MONITOR. You can then load special 
printer or disk drivers, or do any MONITOR commands.

==s333S====s========s================s=s===s================
//DDT 80 <return> or //DDT or //DD

This command junps from EDITOR or MONITOR back into 
DDT80 mode. You can then reset I/O vector channels or do any 
DDT80 commands. This is different than the MONITOR PP command, 
which would reenter DDT8O, but also would reset default RAM 
buffer boundaries. The //DDT80 command will not alter your 
currently set boundaries.

//EDITOR <return> or //ED

This command junps from MONITOR or DDT8O mode back 
into EDITOR mode. It also automatically resets the source 
input channel so that :SI=:BI. (This is so that after an 
assemble you do not inadvertantly reenter EDITOR with :SI still 
set to :B0.) If you are using cassette or any I/O other than 
RAM-based, you should return from DDT80 via E :ER or from 
MONITOR via the commands //DDT80 and then E :ER. For normal 
RAM-based development, you will find the //EDIT command very 
handy.

//ASSEMBLY <return> or //AS

This command junps to DDT80 exactly as does //DDT, but 
then sets up the :SI=:BO vector channel needed for RAM-based 
assembly. This permits the programmer to go immediately and 
directly from within EDITOR to prepare for an assembly. This 
command assumes RAM-based I/O so it will not wait to copy files 
to or from tape before it leaves EDITOR. Neither will it list 
out all of your text (a time saver if the text is long). This 
command does not trigger actual assembly. We suggest you issue 
//PH or //PR and then E :AS which will perform the actual 
assembly.



//RAMSET <return> or //RAM or //RA

This command does no jumps. It simply resets all I/O 
channels for RAM-based development. It may be used when in 
EDITOR or when in any other mode, (this command is issued 
automatically at DPX start-up time.)

DPX PRINTING CONTROL COMMANDS

DPX includes three commands to control printing. One 
is used to enable you to halt screen printing to examine text 
or assembly errors. The others permit use of a serial printer:

//PHALT <return> or //PH

This command enables you to halt any ASSEMBLER (or 
EDITOR) listing on the screen, by pressing any key while the 
listing is in progress. A second keypress of any key will 
resume listing. During a bad assembly, you may abort the 
assembly and exit to MONITOR by halting the listing and then 
hitting escape (ESC).

//PRINTER <return> or //PR

This command does a MONITOR SET T=1 and then routes 
all further screen output thru a built-in 300 baud driver for 
RS-232 serial printers. If you have a serial printer plugged 
into your Sorcerer’s cassette/RS-232 connector, this is all you 
need to get assembly and EDITOR listings on hard copy.

If you are using 1200 baud serial printing or a 
parallel printer interface, you can customize this command in 
your copy of DPX. See CUSTOMIZING DPX INTERNALS (Appendix B) .

//PVIDEO <return> or //PV

This command turns off your printer. It cancels the 
effect of a //PR or //PH and resets the baud rate to 1200 (SET 
T=0).

NOTE: You can use either #PV or //PR or //PH but not more than 
one at a time. These commands work through MONITOR internals, 
and are independent of the DEVELOPMENT PAC output channel 
vectors.



DPX EDITING COMMANDS

The following commands are intended to be used 
while in EDITOR mode. Most of them are locked out if you are 
inserting text and again become active upon return to normal 
EDITOR level. There is no way to prevent you using these in 
DDT80 or MONITOR, so they are active there as well. Those 
commands vhich affect pointer movement, however, may cause 
unpredictable results if you're not in EDITOR when you issue 
them.

#UP nn <return> or #U nn

This command moves the EDITOR pointer upward. Now 
you can go back up a few lines without going all the way to 
beginning of file. The value of nn can be any number. This 
command moves the line pointer upward nn+1 lines, then the 
ending return causes EDITOR to drop back down one line and 
print it. If you omit the parameter (#U <return>) you'll 
move up one line, just as the normal EDITOR command of one 
carriage return moves down one line.

Because of the ending return, if you move upward 
to top of file, what gets printed is not the very first 
line, but the next one. This is like typing B<return>. The 
only way to print the very first line is to type BT<return>.

#UP /string/ or #U /string

This is a companion command to the preceding one. 
It moves upward to the line upon which 'string' is found. 
This lets you find a previous line containing a specific 
word or value.

The search string may be any length up to a full 
line. It may. not contain tab characters. The first 
character in 'string' must not be a space or any character 
less than ASCII zero (030H), or it will be ignored. 
(This is due to the use of internal monitor routines for 
parameter decoding.) Thus /-$/ won't be found but /F-$/ 
will. And #UP / ;comment/ is treated the same as #UP 
/;comment/.



If ’string’ is not found, the pointer doesn’t 
move up. Instead the next line is printed and you can 
search again. Search always begins above the current line 
so you can search and find the same string if it occurs in 
several lines.

//AGAIN <return> or //UA or //A

Because repeated searches are very often needed to 
find the line you want, DPX always ’remembers' the latest 
used //UP /string/ command. By using the //A command, you 
will see a recap of that command, then it will be executed 
again.

Searching upward requires that you be positioned 
below the desired line. You can ensure that you are by 
entering B9999 <return> before beginning the search.

//LINENO <return> or //LI

All lines in the editor have an 'invisible' line nunber. 
When you enter a command such as:

B<return>6<return>

you are in effect moving the pointer to the 6th line, 
assuming that the very first line was numbered zero, the 
nex t (1), etc.

It is convenient to be able to tell vhat line 
you're at, and later to be able to return quickly to that 
line if you have moved away from it. The //LI command gives 
you this ability. It prints the 'nunber' of the current line 
but does not move the pointer. Later, you may return 
directly to that same line by typing B<return> then 
nn<return> where nn was the given line nunber.

(Notice that if you are at top of file, //LI will 
confirm you're at line 0, but then prints out line 1. 
Again, only the BT command can actually show you the very 
first line of text!)

-8-



//FIND /string/ <return> or #F /string/
===============================»«==

Since forward movement is so easily done by simply 
hitting one return then holding down the repeat key (thereby 
scrolling forward thru the text), you don’t usually need any 
other forward search command. However in a long file, this 
takes several seconds, and since the //CHANGE commands always 
leave you at top of file, you'll sometimes want to return 
quickly down the file to a particular bit of text.

The #F command operates similar to the upward 
search command but searches forward. There are a few other 
differences as well.

#F will find strings with leading blanks or other 
special characters.

Also, with #F, the string may include wild 
characters. #F /LD ?,A/ would find either the line ' LD E,A' 
or the line ' LD D,A'. Wherever you use a question mark in 
the search string, any character in the text (including a 
question mark, of course) will qualify.

If the string is not found, //F takes you back to 
top of file. If it is found, you are left pointing at that 
line and can follow up with a //CHANGE request.

//CHANGE /string!/strings/ nn or //C /str!/str2/

This is a GLOBAL CHANGE command. It will find all 
lines containing string!, print them, change string! to 
strings, and reprint the changed line. It will continue to 
do so for 'nn' lines of text. It will then junp to top of 
file.

If no line count is given, only one change will be 
made, on the current line. It then junps to top of file.

Only the first occurrence of string! will be 
changed on each line. You can of course, reissue the 
command to change the next occurrence on each line.

//CHANGE expands or deletes text as required. A 
null string may be used as strings, (#C /string!//) in 
which case string! will be deleted from the specified 
line(s). Tab characters may not be used - use blanks as 
needed. String! may contain WILD characters (?) as in the 
//FIND command.

-9-



We suggest using //LI before each //C so that you 
can quickly return to the first changed line. Or you can 
use //F to get back there.

If you make a mistake while typing, 
shift-RUB. Either will cancel the command.

hit § or

The primary use of the //CHANGE command is not for 
line-by-line editing but to do tilings like change the name 
of a variable throughout a program or delete extra blanks or 
comments from a range of lines to free up more edit buffer 
space.

//QCHANGE /string1/string2/ nn or //QC /str1/str2/

This performs exactly as the global //CHANGE 
command but is safer. It prints each found line then asks 
for a keyboard response telling it whether to make the 
alteration on that line. You may reply:

N — don’t make this change, continue looking.
ESC —(escape key) don’t change. Stop the search.
Y —(or any other key) make the change and proceed.

DPX FILE HANDLING COMMANDS

The DEVELOPMENT PAC already includes the R and W file 
handling commands to permit moving (or ’spooling’) large files 
of text through the EDITOR memory. Ihese work well, but have 
limitations. The line-by-line I/O is time consuming for large 
files; indexing is not supported; you can only save from the 
beginning or merge onto the end of existing text; and you must 
exit the EDITOR to alter I/O vector settings.

DPX improves the DEVELOPMENT PAC file handling 
capability by adding:

1. fast file backup at 1200 baud,
2. the ability to extract or merge blocks of text 

at any point you specify, and
3. file names.

These features allow the programmer to build up a 
library of commonly used Z-80 subroutines that can easily be 
found and merged in when needed.

-10-



#STAT <return> or #ST

If you knew the low and high address boundaries of 
your text in memory, obviously you could quickly junp to 
MONITOR and SAVE the contents on tape, then junp back to EDITOR 
mode. Then you could later reload everything using the regular 
MONITOR LOAD command. (This is one way to back up and protect 
your current EDITOR session results against the system going 
’down’).

The #STAT command prints out four pointer addresses 
associated with the EDITOR buffer. These are start of text 
(LO), end of text (EOT), end of edit buffer (HI), and the 
address of the beginning of current line (LIN). It also tells 
how many bytes of text storage are still free.

Backup with DPX is easy. Just issue #STAT, then #MON. 
SAVE memory from LO to EOT on tape. Issue #ED to return to 
further editing. At any later point you can just issue #MON 
then LOAD back from tape and issue #ED to recover the entire 
previous EDITOR buffer contents. (You don’t have to specify a 
reload address as long as the buffer boundaries are set the 
same way as when you did the SAVE). This method will save or 
reload 12k of text in under 2 minutes. (Baud rate is selected 
as for the #SAVE command, below. It is a good idea to always 
issue a #PV command before saving to be sure that the cassette 
baud rate is 1200, not 300 baud.)

#STAT can also help you fix up or recover lost text 
in case of a system glitch.

Here is how the EDITOR buffer pointers work. If you 
use the M command to examine these addresses, you’ll see that 
normally the memory byte at the LO address contains zero (OOH).

Text actually begins at the next byte, with the end of each 
line denoted by ODH OAH (CR LF). The text runs continuously up 
to EOT, which contains another OOH value, from there up to HI 
is garbage or old text, invisible to the EDITOR commands. HI 
contains another OOH. HI is still 192 bytes below the real top 
of the EDITOR buffer, but it is the point at vhich the EDITOR 
will give you the FULL message.

If you insert a OOH value intentionally or through a 
sytem glitch between LO and EOT, the EDITOR will consider that 
to be EOT, and all text beyond it is 'lost'. Issuing #STAT 
tells you the exact current location of the EOT byte. If you 
change the value at that RAM location to a blank (020H), text 
will be ’recovered’ up to the next (real or extraneous) OOH 
value.

-11-



If you’ve typed- E :ED instead of E :ER, your text is 
not really gone. All you have to do is locate the new EOT, 
which should now be right next to LO, and change its value from 
OOH to 020H. Your text will reappear the next time you issue E 
:ER or //ED.

Finally, the LIN address shows you exactly where in 
RAM the currently displayed line begins, so you can find that 
text and alter it via the M command if you need to.

//SAVE fname nn x <return> or //SA fname nn

This command saves part of the current text as a 
Named file designated by frame (up to 5 characters), writing 
the file to tape mit x (1 or 2). Saving begins at the 
beginning of the current line and proceeds for nn lines of text 
(nn is any decimal number up to 4 digits).

(You can see exactly what you are about to save by 
issuing nnT first, then saving nn lines).

All parameters are required, except for the tape init 
number, which defaults to 1 if omitted.

Saving is done at the baud rate determined by the 
current MONITOR value of SET T=0 or SET T=1. If //PV is in 
effect, so is T=0, and baud rate is 1200. If //PR is in effect, 
so is T=1, and baud rate is 300. (Get in the habit of issuing 
//PV before using //SAVE).

Files are normal MONITOR format, with headers, and 
can be scanned with the MONITOR FILES command.

//SAVE is intended for extracting blocks of text which 
comprise useful subroutines, to build libraries of named 
routines on tape.

//SAVE can also be used for fast file backup of the 
complete edit buffer. But you must first ensure that you are at 
top of file, and must give a value of nn large enough to ensure 
that the entire text is saved.

On completion of a //SAVE, you remain in the EDITOR, 
positioned at the line following the first one saved.

If a mistake is made in specifying the file name, you 
can escape from a //SAVE by not hitting the (return) key to 
start the tape, but by hitting the (escape) key instead.

Do not use this command from MONITOR or DDT80 modes. 
It won’t hurt your text, but the wrong area of RAM may be 
saved.

-12-



« 5

//LOAD fname x <return> or //LO fname

This command is not the same as a MONITOR LOAD 
command. A merge is performed when //LOAD is used. It opens the 
existing text at the current line, merges in a complete file 
from tape, then closes the existing text around it. This 
permits reload of routines stored on tape using the //SAVE 
command.

The new text is moved in just above 
With //LOAD you can quickly merge text at the 
of file, or anywhere in the middle.

the current line.
top of file, end

All parameters are required except tape unit nunber, 
which defaults to 1 if omitted.

//LOAD will read in any kind of MONITOR format file 
having the specified name. It will not read in unlabeled files 
created by the DEVELOPMENT PAC W command. It is up to you to be 
careful which files are which on your tapes.

Baud rate for //LOAD is affected by //PR, //PV, and 
direct monitor SET T= commands, just as for //SAVE. As usual, 
you cannot load files except at the baud rate used to save 
them. Issuing //PV before a //LOAD always ensures a baud rate of 
1200.

If a mistake is made in specifying the file name, you 
can escape from a //LOAD by not hitting the (return) key to 
start the tape, but by hitting the (escape) key instead.

In case of tape CRC errors, #LOAD will exit to the 
MONITOR. You may retry the load using the normal MONITOR LOAD 
command, including start, end, and load address parameters. 
Just for this purpose, //LOAD always computes and prints the 
equivalent MONITOR command with these parameters, before it 
executes a load. All you have to do is copy that command in 
MONITOR to retr y the load.

While #LOAD is being attempted, your text buffer is 
said to be 'open'. The part of the existing EDITOR text 
following the intended load point has been shifted higher in 
memory so that the end of the text is at HI and the intervening 
space has been filled with values of 02H. At the end of a 
successful //LOAD, the buffer ’closes' by shifting the remaining 
text back down in memory so that it immediately follows the 
file newly loaded. This ’splice' point is the first 02H value 
encountered in a quick scan from LO upward to HI.

-13-



Executing a #ED command will perform this ’close’ 
procedure and get you back from the MONITOR into EDITOR level.

If you have not been able to successfully load the 
complete file, whatever part of it that did load will be merged 
into the text. You can delete these lines if you wish.

Finally, since #LOAD always loads a complete file, 
you have the responsibility of ensuring that there is 
sufficient space left in the EDITOR buffer to hold it along 
with the text already there. The #STAT command shows you free 
space in decimal, and you can compute it in Hex by using the H 
command to subtract EOT from HI.

When the loading begins, the required file space will 
be seen from the BLK parameter in the tape file header. If it 
won’t fit, abort the load by pressing RUN STOP and then issue 
#ED to recover.

Normally, there is plenty of free space, and tapes 
load very reliably, so recovery procedure is rarely needed. It 
is explained just in case. (We have repeatedly loaded blocks 
of text as large as 22K with no difficulty).

Do not use this command except when in EDITOR mode.

DPX SPACE MANAGENENT COMMAND

On a larger machine, it’s easy to ensure lots of 
EDITOR buffer space simply by resetting RAM partition 
boundaries #3 and #4 downward. This leaves more room in the 
EDITOR partition, where you need it, and less in the object 
partition, where you usually only, need several K of space. 
Using the DDT80 M command, you can set these down as far as 
they would default to on an 8K machine:

addr value description
0132H 7FH top of Dt)T8O work area
O133H OEH
O134H FFH top of obj buffer; EDITOR DO
O135H 1CH

DPX trill not disturb these settings, and neither will any other 
command except the MONITOR PP command. (And with DPX transfer 
commands, you needn't use PP at all.) On a 32K Sorcerer, this 
lets you work in about 23K of EDITOR.

-14-



Nevertheless, you will one day devise a program so 
large, with so many routines, that you’ll run out of RAM. In 
particular, the use of tabs, uhile it makes clean listings, 
eats up a lot of space for storing nothing but blanks. So, 
here is one last DPX command:

//SQUEEZE <return> or #SQ

This command runs through the text in a couple of 
seconds and removes all occurrences of multiple blanks. 
However, it always leaves 2 blanks between words, so the text 
is still easy to read and still assembles properly. It reclaims 
and frees up about 1/3 of the space previously taken up by the 
text!

You'll also find that 
printing of listings quite a bit.

this command speeds up the

-15-



APPENDIX A:
48K OR OTHER CONFIGURATIONS OF DPX

Since DPX was developed on a 32K system, we could 
not directly provide load-and-go versions for a larger system. 
However, there is included on your tape a relocatable load 

If you have a 48K Sorcerer, or wish to use
seme other memory boundaries, reserving a portion of RAM for 
your own routines, the follcwing one-time procedure will give 
you a load-and-go version tailored to your needs.

Set up DEVELOPMENT PAC with the following 
I/O channel:

:OI=:AO

Place the DPX cassette on tape unit 1, so that the load module 
copy will be read in. (The load module is on side 2 of the 
tape, the opposite side frcm where DPX8, DPX16, DPX32 are 
recorded.)

Enter the Sorcerer Monitor by typing

E E003 <retum>

LOG DPXLM

and pressing RETURN after starting the tape. The Load Module 
program will partition the development system for a 32K system. 
Create an object module for a 48K Sorcerer by typing

. L B452, BD40 < retum>

The value of BD40 is a dummy address for the Loader to use as 
its symbol table location. If you are using some other memory 
configuration, then instead of B452, calculate the load address 
for your system, where

addr=(top of partition 2)-8AE+l

The load c the tape from unit 1 and
generate a loaded copy, giving you start and end addresses for 
a 48K machine, of B452H thru BCFFH. Type a period to escape to 
the Monitor. Now type the Monitor command SET X=B452 (or what
ever your load address was). Now set up unit 1 to record and 
simply SAVE DPX48 B452 BCFF. This places a load-and-go version 
of DPX on tape. From new on, you need only use this tape copy, 
and LOG DPX48, just as for the other standard versions.



r-5

APPENDIX B:
CUSTOMIZING DPX INTERNALS

If you wish, you may further tailor DPX to your par
ticular needs. If you need special disk or printer drivers 
of your own, you may place the code for these in front of the 
DPX object code. At execution, DPX resets the top of partition 
2 below itself, to protect against overwriting. The pointer 
for this is located at ORG4-112AH, where ORG represents the 
start address of DPX. Change this value to the beginning of 
your routines and DPX will protect their RAM area also.

The command table is located within DPX at ORG+OIDBH.
It consists of a two-byte ASCII command followed by a two-byte 
jump address to the relevant routine, then another two-byte 
command, etc. You may change any jump address to point to your 
routine instead. Your routine should end with a RTN op code (0C9H) .

If you are using a 1200 baud serial printer, you can
iify the #PR. command for 1200 instead of 300 baud operation.

This is done by changing the value stored at ORG+040AH from OOH 
to 40H. If you are using a parallel printer, you will need to 
alter the value stored at ORG+O410H. Change the two-byte address 
stored there to the address of your own printer driver routine. 
If you have a Centronics-type printer, you can use the driver in 
the DEVELOPMENT PAC by setting:

ORG+O410H = 52H
GRGK)411H = C5H

After making such modifications, re-SAVE the customized 
version of DPX (plus your own code, if any).

For your information,

DPX version ORG

DPX8
DPX16
DPX32

1452H
3452H
7452H



=================== EDITOR COMMANDS: ==========

B, - Move to Beginning (top of file)
n<CR> - Move line pointer down n lines

#U n - Move line pointer up n lines
#U /str/ - Move up to string
#F /str/ - Find string (downward search)
#QC /str1/str2/ n - Query/change n lines 
#C /str1/str2/ n - Global change n lines 
#LI - Show current line number, text
I - Insert lines above current
nD - Delete n lines from current
nT - Type n lines; don't move
nR - Read n lines from :SI channel
nW - Write n lines to :S0 channel
E

#SA fh n x
#L0 fn x
#ST
#SQ
#AS
#M0
#DD

- Exit, finish copying in or out
- Save n lines onto x as file fh
- Load/merge file fh from x
- Statistics and free space
- Squeeze out blanks
- Assembly :SI setup then #DD
- Goto MONITOR, no wait for copying
- Goto DDT80, no wait for copying

=============== MONITOR COMMANDS: ==========================

PP - Reset partitions, reenter DDT80
#DDT - Goto DDT80
#ED - Goto EDITOR, closing buffer

=================== DDT80 COMMANDS: =======================

M - Memory display/modify
R - Register display/modify
E - Execute program (E E003 E :ED)
H - Hex arithmetic calculator
L - Loader

#M0 
#ED 
#RA 
#AS 
#PH 
#PR 
#PV

- goto MONITOR
- goto EDITOR (reentry)
- RAM based I/O channels
- Assembly I/O setup (:SI= :B0)
- Print with Halt option
- Print 300 baud RS-232
- Print 1200 baud video

-18-



X*

APPENDIX D:
CAVEAT ON LOADING WITH DPX

DPX intercepts each keyboard input and writes into 
memory locations 0136H and 0137H the value for the ENDC = Top of 
Partition #2. This applies immediately after Loading and will 
conrupt a program loaded into that part of memory. To avoid 
this without hitting RESET, the user may enter the Sorcerer 
Monitor by typing

E E003 {return^

In the Monitor type

SET I=K (return^

This will disable DPX. To return to the DEVELOPMENT PAC with 
resetting partition boundaries type

GO C0E3 Return)

At this point DPX will not interfere with Loading 
into 0136-0137H. To later return to DPX. enter the Monitor . 
issue the c

GO ORG< return)

where ORG is the beginning address of DPX as defined in Appendix B.

-19-




